13

- 14. The method of claim 1, wherein,
- at least a portion of the at least one epitaxial Al, In,  $Ga_{(1-x-y)}N$  layer proximate to the substrate is patterned;
- at least a portion of the at least one epitaxial Al<sub>x</sub>In<sub>y</sub>, 5 Ga<sub>(1-x-v)</sub>N layer distal to the substrate is coalesced or continuous and relaxed, having a strain, relative to fullyrelaxed Al<sub>x</sub>In<sub>y</sub>Ga<sub>(1-x-y)</sub>N, of less than 0.01%.
- 15. The method of claim 1, wherein the at least one Al<sub>x</sub>- $In_{\nu}Ga_{(1-x-\nu)}N$  layer comprises more than one epitaxial  $Al_{x^{-}}^{"}$  10 In Ga(1-x-y)N layer, wherein
  - at least a portion of a first epitaxial  $Al_x In_y Ga_{(1-x-y)} N$  layer overlying the substrate is patterned; and
  - at least a portion of a second epitaxial  $Al_xIn_yGa_{(1-x-y)}N$  layer overlying the first epitaxial  $Al_xIn_yGa_{(1-x-y)}N$  layer 15 is coalesced or continuous and relaxed, having a strain, relative to fully-relaxed Al<sub>x</sub>In<sub>y</sub>Ga<sub>(1-x-y)</sub>N, of less than 0.01%.
- 16. The method of claim 1, wherein at least one of x and y is between 0.01 and 0.50.
- 17. A device comprising a biaxially relaxed epitaxial  $Al_x$ In, Ga<sub>(1-x-y)</sub>N layer formed by the method of claim 1, wherein the epitaxial Al<sub>x</sub>In<sub>y</sub>Ga<sub>1-x-y</sub>N layer is characterized by:  $0 \le x$ , y,  $x+y \le 1$  and y > 0.10;

- a surface orientation within 5 degrees of a c-plane;
- a thickness greater than 100 nanometer;
- a concentration of threading dislocations less than 108 cm<sup>-2</sup>; and

a biaxial strain less than 0.1%.

14

18. A device, comprising at least one layer comprising  $Al_xIn_yGa_{1-x-y}N$ , wherein the at least one layer is characterized

 $0 \le x$ , y,  $x+y \le 1$  and y > 0.10;

- a surface orientation within 5 degrees of a c-plane;
- a thickness greater than 100 nanometer;
- a concentration of threading dislocations less than 108 cm<sup>-2</sup>; and
- a biaxial strain less than 0.1%.
- 19. The device of claim 18 wherein the device is selected from among a light emitting diode, a laser diode, a photodetector, an avalanche photodiode, a transistor, a rectifier, and a thyristor; one of a transistor, a rectifier, a Schottky rectifier, a thyristor, a p-i-n diode, a metal-semiconductor-metal diode, high-electron mobility transistor, a metal semiconductor field effect transistor, a metal oxide field effect transistor, a power metal oxide semiconductor field effect transistor, a power metal insulator semiconductor field effect transistor, a bipolar junction transistor, a metal insulator field effect transistor, a heterojunction bipolar transistor, a power insulated gate bipolar transistor, a power vertical junction field effect transistor, a cascode switch, an inner sub-band emitter, a quantum well infrared photodetector, a quantum dot infrared photodetector, a solar cell, and a diode for photoelectrochemical water splitting and hydrogen generation.